Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism.

نویسندگان

  • S S Eaglestone
  • B S Cox
  • M F Tuite
چکیده

[PSI+] is a protein-based heritable phenotype of the yeast Saccharomyces cerevisiae which reflects the prion-like behaviour of the endogenous Sup35p protein release factor. [PSI+] strains exhibit a marked decrease in translation termination efficiency, which permits decoding of translation termination signals and, presumably, the production of abnormally extended polypeptides. We have examined whether the [PSI+]-induced expression of such an altered proteome might confer some selective growth advantage over [psi-] strains. Although otherwise isogenic [PSI+] and [psi-] strains show no difference in growth rates under normal laboratory conditions, we demonstrate that [PSI+] strains do exhibit enhanced tolerance to heat and chemical stress, compared with [psi-] strains. Moreover, we also show that the prion-like determinant [PSI+] is able to regulate translation termination efficiency in response to environmental stress, since growth in the presence of ethanol results in a transient increase in the efficiency of translation termination and a loss of the [PSI+] phenotype. We present a model to describe the prion-mediated regulation of translation termination efficiency and discuss its implications in relation to the potential physiological role of prions in S.cerevisiae and other fungi.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat Shock-Induced Accumulation of Translation Elongation and Termination Factors Precedes Assembly of Stress Granules in S. cerevisiae

In response to severe environmental stresses eukaryotic cells shut down translation and accumulate components of the translational machinery in stress granules (SGs). Since they contain mainly mRNA, translation initiation factors and 40S ribosomal subunits, they have been referred to as dominant accumulations of stalled translation preinitiation complexes. Here we present evidence that the robu...

متن کامل

Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae.

The cytoplasmic heritable determinant [PSI(+)] of the yeast Saccharomyces cerevisiae reflects the prion-like properties of the chromosome-encoded protein Sup35p. This protein is known to be an essential eukaryote polypeptide release factor, namely eRF3. In a [PSI(+)] background, the prion conformer of Sup35p forms large oligomers, which results in the intracellular depletion of functional relea...

متن کامل

[PSI+]: an epigenetic modulator of translation termination efficiency.

The [PSI+] factor of the yeast Saccharomyces cerevisiae is an epigenetic regulator of translation termination. More than three decades ago, genetic analysis of the transmission of [PSI+] revealed a complex and often contradictory series of observations. However, many of these discrepancies may now be reconciled by a revolutionary hypothesis: protein conformation-based inheritance (the prion hyp...

متن کامل

Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation.

Messenger RNA decay, which is a regulated process intimately linked to translation, begins with the deadenylation of the poly(A) tail at the 3' end. However, the precise mechanism triggering the first step of mRNA decay and its relationship to translation have not been elucidated. Here, we show that the translation termination factor eRF3 mediates mRNA deadenylation and decay in the yeast Sacch...

متن کامل

[PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies 'species barriers'.

[PSI+] is a prion of Sup35p, an essential translation termination and mRNA turnover factor. The existence of lethal [PSI+] variants, the absence of [PSI+] in wild strains, the mRNA turnover function of the Sup35p prion domain, and the stress reaction to prion infection suggest that [PSI+] is a disease. Nonetheless, others have proposed that [PSI+] and other yeast prions benefit their hosts. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 18 7  شماره 

صفحات  -

تاریخ انتشار 1999